Wetenschap
Wanneer onderzoekers openbare opiniepeilingen uitvoeren, berekenen ze de vereiste steekproefomvang op basis van hoe nauwkeurig ze willen dat hun schattingen zijn. De steekproefomvang wordt bepaald door het betrouwbaarheidsniveau, de verwachte proportie en het betrouwbaarheidsinterval dat nodig is voor de enquête. Het betrouwbaarheidsinterval vertegenwoordigt de foutenmarge in de resultaten. Als een peiling met een betrouwbaarheidsinterval van plus of min 3 procentpunten bijvoorbeeld aantoont dat 56 procent van de mensen een kandidaat ondersteunde, zou het werkelijke percentage waarschijnlijk tussen 53 en 59 procent zijn.
Vier de Z-score vereist voor uw gewenste betrouwbaarheidsniveau. Als u bijvoorbeeld een betrouwbaarheidsniveau van 95 procent hebt gebruikt, wat betekent dat u met 95 procent zekerheid kunt zeggen dat de werkelijke proportie binnen uw betrouwbaarheidsinterval valt, zou uw Z-score 1,96 zijn, dus zou u 1,96 keer 1,96 vermenigvuldigen om 3,8416 te krijgen .
Schat het aandeel van de grootste groep in. Als je het niet zeker weet, gebruik dan 0.5 als verwachte verhouding, want hoe dichterbij de twee verhoudingen, hoe groter de steekproefgrootte die je nodig hebt. Als u bijvoorbeeld verwachtte dat 60 procent van de mensen zou stemmen op de gevestigde exploitant, zou u 0,6 gebruiken.
Trek de verwachte verhouding af van 1. Bij voortzetting van het voorbeeld zou u 0.6 van 1 aftrekken om 0,4 te krijgen. >
Vermenigvuldig het resultaat uit stap 3 met de proportie uit stap 2. In dit voorbeeld vermenigvuldigt u 0,4 keer 0,6 om 0,24 te krijgen.
Vermenigvuldig het resultaat van stap 4 met het resultaat van stap 1. Als u het voorbeeld voortzet, zou u 3,8416 vermenigvuldigen met 0,24 om 0,921984 te krijgen.
Voer het betrouwbaarheidsinterval uit, uitgedrukt in een decimaal, voor uw enquête. Als uw betrouwbaarheidsinterval bijvoorbeeld gelijk is aan plus of minus 2 procentpunten, zou u 0,02 staan om 0,0004 te krijgen.
Deel het resultaat van stap 5 door het betrouwbaarheidsinterval in het kwadraat om de vereiste steekproefomvang te berekenen. In dit voorbeeld zou u 0.921984 delen door 0.0004 om 2.304.96 te krijgen, wat betekent dat u een steekproefgrootte van 2.305 mensen nodig heeft voor uw enquête.
Wetenschap © https://nl.scienceaq.com