Wetenschap
Wanneer u met functies werkt, moet u soms de punten berekenen waarop de grafiek van de functie de x-as kruist. Deze punten treden op wanneer de waarde van x gelijk is aan nul en zijn de nullen van de functie. Afhankelijk van het type functie waarmee u werkt en hoe deze is gestructureerd, heeft deze mogelijk geen nullen of meerdere nullen. Ongeacht het aantal nullen dat de functie heeft, kunt u alle nullen op dezelfde manier berekenen.
TL; DR (te lang; niet gelezen)
Bereken de nullen van een functie door de functie op nul in te stellen en deze vervolgens op te lossen. Polynomen kunnen meerdere oplossingen hebben om de positieve en negatieve uitkomsten van zelfs exponentiële functies te verklaren.
Nullen van een functie
De nullen van een functie zijn de waarden van x waarbij de totale vergelijking gelijk is aan nul , dus het berekenen ervan is net zo eenvoudig als het instellen van de functie op nul en het oplossen voor x. Om een eenvoudig voorbeeld hiervan te bekijken, overweeg de functie f (x) \u003d x + 1. Als u de functie instelt op nul, ziet deze eruit als 0 \u003d x + 1, wat u x \u003d -1 geeft zodra u aftrekt 1 van beide kanten. Dit betekent dat de nul van de functie -1 is, omdat f (x) \u003d (-1) + 1 u een resultaat geeft van f (x) \u003d 0.
Hoewel niet alle functies zo eenvoudig zijn nullen berekenen, dezelfde methode wordt zelfs gebruikt voor meer complexe functies.
Nullen van een polynoomfunctie
Polynoomfuncties maken dingen mogelijk gecompliceerder. Het probleem met polynomen is dat functies die variabelen bevatten die zijn verhoogd tot een even vermogen, mogelijk meerdere nullen hebben, omdat zowel positieve als negatieve getallen positieve resultaten geven wanneer ze een even aantal keren met zichzelf worden vermenigvuldigd. Dit betekent dat u nullen moet berekenen voor zowel positieve als negatieve mogelijkheden, hoewel u dit nog steeds oplost door de functie op nul in te stellen.
Een voorbeeld maakt dit gemakkelijker te begrijpen. Overweeg de volgende functie: f (x) \u003d x 2 - 4. Om de nullen van deze functie te vinden, begint u op dezelfde manier en stelt u de functie in op nul. Dit geeft u 0 \u003d x 2 - 4. Voeg 4 toe aan beide zijden om de variabele te isoleren, waardoor u 4 \u003d x 2 (of x 2 \u003d 4 krijgt als u liever in standaardvorm schrijft ). Van daaruit nemen we de vierkantswortel van beide kanten, resulterend in x \u003d √4. Het probleem hier is dat zowel 2 als -2 je 4 geven in het kwadraat. Als u slechts een van hen als een nul van de functie opgeeft, negeert u een legitiem antwoord. Dit betekent dat u beide nullen van de functie moet vermelden. In dit geval zijn ze x \u003d 2 en x \u003d -2. Niet alle polynoomfuncties hebben echter nullen die zo netjes overeenkomen; complexere polynoomfuncties kunnen aanzienlijk verschillende antwoorden geven.
Tijdens aerobe ademhaling, combineert de zuurstof die een cel inneemt met glucose om energie te produceren in de vorm van Adenosine-trifosfaat (ATP), en de cel verdrijft koolstofdioxid
Craniologie en frenologie zijn beide praktijken die de conformatie van de menselijke schedel onderzoeken; echter, de twee zijn heel verschillend. Craniologie is de studie van verschillen in vorm, groott
Wetenschap © https://nl.scienceaq.com