Science >> Wetenschap >  >> Fysica

Een pijl wordt verticaal naar boven geschoten met een beginsnelheid van 12 ms. Wat kan de maximale hoogte bereiken? Neem g 10 N kg?

Om de maximale hoogte (h) te bepalen die de pijl bereikt, kunnen we de bewegingsvergelijking gebruiken voor een verticaal bewegend projectiel:

$$v^2 =u^2 + 2gs$$

waar:

- v is de eindsnelheid van het projectiel (op de maximale hoogte zal deze 0 m/s zijn)

- u is de beginsnelheid van het projectiel (12 m/s)

- g is de versnelling als gevolg van de zwaartekracht (-10 m/s²)

- s is de verplaatsing van het projectiel (in dit geval de maximale hoogte, h)

Vervanging van de gegeven waarden in de vergelijking:

$$0^2 =(12 \text{ m/s})^2 + 2(-10 \text{ m/s}^2)h$$

Vereenvoudiging:

$$0 =144 \text{ m}^2/\text{s}^2 - 20h \text{ m/s}^2$$

$$20h \text{ m/s}^2 =144 \text{ m}^2/\text{s}^2$$

Oplossen voor h:

$$h =\frac{144 \text{ m}^2/\text{s}^2}{20 \text{ m/s}^2}$$

$$h =7,2 \text{ m}$$

Daarom is de maximale hoogte die door de pijl wordt bereikt 7,2 meter.