Wetenschap
Het concept van verplaatsing kan voor veel studenten lastig zijn om te begrijpen wanneer ze het voor het eerst tegenkomen in een cursus natuurkunde. In de natuurkunde verschilt verplaatsing van het concept afstand, waar de meeste studenten eerder ervaring mee hebben. Verplaatsing is een vectorgrootheid, dus het heeft zowel grootte als richting. Het wordt gedefinieerd als de vector (of rechte lijn) afstand tussen een begin- en een eindpositie. De resulterende verplaatsing hangt daarom alleen af van de kennis van deze twee posities.
TL; DR (te lang; niet gelezen)
Om de resulterende verplaatsing in een fysisch probleem te vinden, past u de Pythagoras toe formule voor de afstandsvergelijking en gebruik trigonometrie om de bewegingsrichting te vinden.
Bepaal twee punten
Bepaal de positie van twee punten in een bepaald coördinatensysteem. Stel bijvoorbeeld dat een object in een Cartesiaans coördinatensysteem beweegt en de begin- en eindposities van het object worden gegeven door de coördinaten (2,5) en (7,20).
Vergelijking van Pythagoras instellen
Gebruik de stelling van Pythagoras om het probleem van het vinden van de afstand tussen de twee punten in te stellen. Je schrijft de stelling van Pythagoras als c 2 \u003d (x 2-x 1) 2 + (y 2-y 1) 2, waarbij c is de afstand die u oplost, en x 2-x 1 en y 2-y 1 zijn de verschillen van de x, y-coördinaten tussen de twee punten, respectievelijk. In dit voorbeeld bereken je de waarde van x door 2 af te trekken van 7, wat 5 oplevert; voor y, trek de 5 in het eerste punt af van de 20 in het tweede punt, dat 15 geeft. Vervang de getallen in de vergelijking van Pythagoras en los op. In het bovenstaande voorbeeld geeft het vervangen van getallen in de vergelijking c \u003d √ * ( Om de richting van de verplaatsingsvector te berekenen, berekent u de inverse tangens van de verhouding van de verplaatsingscomponenten in de y- en x-richtingen. In dit voorbeeld is de verhouding van de verplaatsingscomponenten 15 ÷ 5 en het berekenen van de inverse tangens van dit aantal geeft 71,6 graden. Daarom is de resulterende verplaatsing 15,8 eenheden, met een richting van 71,6 graden vanaf de oorspronkelijke positie
Oplossen voor afstand
* 5 2 + 15 2), waarbij het symbool √ de vierkantswortel aangeeft. Het oplossen van het bovenstaande probleem geeft c \u003d 15,8. Dit is de afstand tussen de twee objecten.
Bereken de richting
Wetenschap © https://nl.scienceaq.com