Wetenschap
Een bovenleiding is de vorm die een kabel aanneemt wanneer deze aan zijn uiteinden wordt ondersteund en alleen door zijn eigen gewicht wordt beïnvloed. Het wordt veel gebruikt in de bouw, vooral voor hangbruggen, en een omgekeerde bovenleiding wordt al sinds de oudheid gebruikt om bogen te bouwen. De curve van de bovenleiding is de hyperbolische cosinusfunctie die een U-vorm heeft die vergelijkbaar is met die van een parabool. De specifieke vorm van een bovenleiding kan worden bepaald door de schaalfactor.
Bereken de standaard bovenleidingfunctie y \u003d een cosh (x /a) waarbij y de y Cartesiaanse coördinaat is, x de x Cartesiaanse coördinaat, cosh is de hyperbolische cosinusfunctie en a is de schaalfactor.
Bekijk het effect van de schaalfactor op de vorm van de bovenleiding. De schaalfactor kan echter de verhouding zijn tussen de horizontale spanning op de kabel en het gewicht van de kabel per lengte-eenheid. Een lage schaalfactor resulteert daarom in een diepere curve.
Bereken de bovenleidingfunctie met een alternatieve vergelijking. De vergelijking y \u003d a cosh (x /a) kan worden weergegeven als wiskundig equivalent aan y \u003d a /2 (e ^ (x /a) + e ^ (- x /a)) waarbij e de basis is van het natuurlijke logaritme en is ongeveer 2.71828.
Bereken de functie voor een elastische bovenleiding als y \u003d yo /(1 + et) waarbij yo de initiële massa per lengte-eenheid is, e de veerconstante is en t tijd is. Deze vergelijking beschrijft een stuiterende veer in plaats van een hangende kabel.
Bereken een praktijkvoorbeeld van een bovenleiding. De functie y \u003d -127.7 cosh (x /127.7) + 757.7 beschrijft de St. Louis Arch waar de metingen zijn in voeteenheden.
Wetenschap © https://nl.scienceaq.com