Wetenschap
Wiskundige functies worden geschreven in termen van variabelen. Een eenvoudige functie y = f (x) bevat een onafhankelijke variabele "x" (invoer) en een afhankelijke variabele "y" (uitvoer). De mogelijke waarden voor "x" worden het domein van de functie genoemd. De mogelijke waarden voor "y" zijn het bereik van de functie. Een vierkantswortel "y" van een getal "x" is een getal zoals y ^ 2 = x. Deze definitie van de vierkantswortelfunctie legt bepaalde beperkingen op aan het domein en het bereik van de functie, gebaseerd op het feit dat x niet negatief kan zijn.
Noteer de volledige vierkantswortelfunctie.
Bijvoorbeeld : f (x) = y = SQRT (x ^ 3 -8)
Stel de invoer van de functie in op gelijk aan of groter dan nul. Van de definitie y ^ 2 = x; x moet positief zijn, daarom stel je de ongelijkheid in op nul of groter dan nul. Los de ongelijkheid op met behulp van algebraïsche methoden. Uit het voorbeeld:
x ^ 3 -8 & gt; = 0 x ^ 3 & gt; = 8 x & gt; = +2
Omdat x groter moet zijn dan of gelijk is aan +2, domein van de functie is [+2, + oneindig [
Schrijf het domein op. Vervang waarden uit het domein in de functie om het bereik te vinden. Begin met de linkergrens van het domein en kies er willekeurige punten uit. Gebruik deze resultaten om een patroon voor het bereik te zoeken.
Het voorbeeld voortzetten: Domein: [+2, + oneindig [op +2, y = f (x) = 0 op +3, y = f ( x) = +19 ... op +10, y = f (x) = +992
Uit dit patroon is het duidelijk dat als x in waarde stijgt, f (x) ook omhoog gaat. De afhankelijke variabele "y" groeit van nul tot "+ oneindig." Dit is het bereik.
Bereik: [0, + oneindig [
Wetenschap © https://nl.scienceaq.com