science >> Wetenschap >  >> Fysica

Hoe de natuurlijke frequentie te berekenen

Alle oscillerende bewegingen - de beweging van een gitaarsnaar, een trillende staaf na het slaan of het stuiteren van een gewicht op een veer - hebben een natuurlijke frequentie. De basissituatie voor berekening omvat een massa op een veer, wat een eenvoudige harmonische oscillator is. Voor meer gecompliceerde gevallen kunt u de effecten van demping (het vertragen van de oscillaties) toevoegen of gedetailleerde modellen bouwen waarbij rekening wordt gehouden met aandrijfkrachten of andere factoren. Het berekenen van de natuurlijke frequentie voor een eenvoudig systeem is echter eenvoudig.

TL; DR (te lang; niet gelezen)

Bereken de natuurlijke frequentie van een eenvoudige harmonische oscillator met behulp van de formule:

f

\u003d √ ( k
/ m
) ÷ 2π

Voer de veerconstante in voor het systeem dat u ter plaatse overweegt voor k
, en de oscillerende massa voor m
, en vervolgens evalueren.
De natuurlijke frequentie van een eenvoudige harmonische oscillator Gedefinieerd

Stel je een veer voor met een bal aan het uiteinde bevestigd met massa m
. Wanneer de opstelling stationair is, is de veer gedeeltelijk uitgestrekt en bevindt de gehele opstelling zich in de evenwichtspositie waar de spanning van de verlengde veer overeenkomt met de zwaartekracht die de bal naar beneden trekt. Door de bal weg van deze evenwichtspositie te brengen, wordt de veer extra gespannen (als u hem naar beneden uitrekt) of geeft de zwaartekracht de mogelijkheid om de bal naar beneden te trekken zonder dat de spanning van de veer hem tegenwerkt (als u de bal omhoog duwt). In beide gevallen begint de bal rond de evenwichtspositie te oscilleren.

De natuurlijke frequentie is de frequentie van deze oscillatie, gemeten in Hertz (Hz). Dit vertelt u hoeveel trillingen er per seconde plaatsvinden, wat afhankelijk is van de eigenschappen van de veer en de massa van de bal die eraan is bevestigd. Geplukte gitaarsnaren, staven die door een object worden geraakt en vele andere systemen oscilleren op een natuurlijke frequentie.
De natuurlijke frequentie berekenen

De volgende uitdrukking definieert de natuurlijke frequentie van een eenvoudige harmonische oscillator:

f

\u003d ω
/2π

Waar ω
de hoekfrequentie van de oscillatie is, gemeten in radialen /tweede. De volgende uitdrukking definieert de hoekfrequentie:

ω
\u003d √ ( k
/ m
)

Dit betekent dus:

f

\u003d √ ( k
/ m
) ÷ 2π

Hier, k
is de veerconstante voor de betreffende veer en m
is de massa van de bal. De veerconstante wordt gemeten in Newton /meter. Veren met hogere constanten zijn stijver en hebben meer kracht nodig om uit te breiden.

Om de natuurlijke frequentie te berekenen met behulp van de bovenstaande vergelijking, moet u eerst de veerconstante voor uw specifieke systeem achterhalen. Je kunt de veerconstante voor echte systemen vinden door te experimenteren, maar voor de meeste problemen krijg je er een waarde voor. Voer deze waarde in op de plek voor k
(in dit voorbeeld k
\u003d 100 N /m) en deel deze door de massa van het object (bijvoorbeeld m
\u003d 1 kg). Neem dan de vierkantswortel van het resultaat, voordat je dit deelt door 2π. De stappen doorlopen:

f

\u003d √ (100 N /m /1 kg) ÷ 2π

\u003d √ (100 s −2) ÷ 2π

\u003d 10 Hz ÷ 2π

\u003d 1.6 Hz

In dit geval is de natuurlijke frequentie 1,6 Hz, wat betekent dat het systeem gewoon zou oscilleren meer dan anderhalve keer per seconde.