Science >> Wetenschap >  >> Energie

Welke transitie-energie komt overeen met een absorptielijn bij 460 nm?

De energie van een foton wordt gegeven door de vergelijking:

$$E =hv$$

waar:

- E is de energie van het foton in joules (J)

- h is de constante van Planck (6,626 × 10^-34 J·s)

- v is de frequentie van het foton in hertz (Hz)

De golflengte van een foton is gerelateerd aan zijn frequentie door de vergelijking:

$$\lambda =\frac{c}{v}$$

waar:

- λ (lambda) is de golflengte in meter (m)

- c is de lichtsnelheid in vacuüm (2,998 × 10^8 m/s)

We kunnen de eerste vergelijking herschikken om de frequentie op te lossen:

$$v =\frac{E}{h}$$

Als we deze uitdrukking voor v in de tweede vergelijking vervangen, krijgen we:

$$\lambda =\frac{hc}{E}$$

We kunnen nu de gegeven golflengte (460 nm) in deze vergelijking vervangen en de energie oplossen:

$$\lambda =\frac{(6,626 × 10^{−34} J \cdot s)(2,998 × 10^8 m/s)}{E}$$

$$E =\frac{hc}{\lambda} =\frac{(6,626 × 10^{−34} J \cdot s)(2,998 × 10^8 m/s)}{460 × 10^{−9 } m} =4,29 × 10^{−19} J$$

Omgerekend naar elektronvolt (eV) hebben we:

$$E =(4,29 × 10^{−19} J)\left(\frac{1 eV}{1,602 × 10^{−19} J}\right) =2,68 eV$$

Daarom komt de overgangsenergie overeen met een absorptielijn bij 460 nm van 2,68 eV.